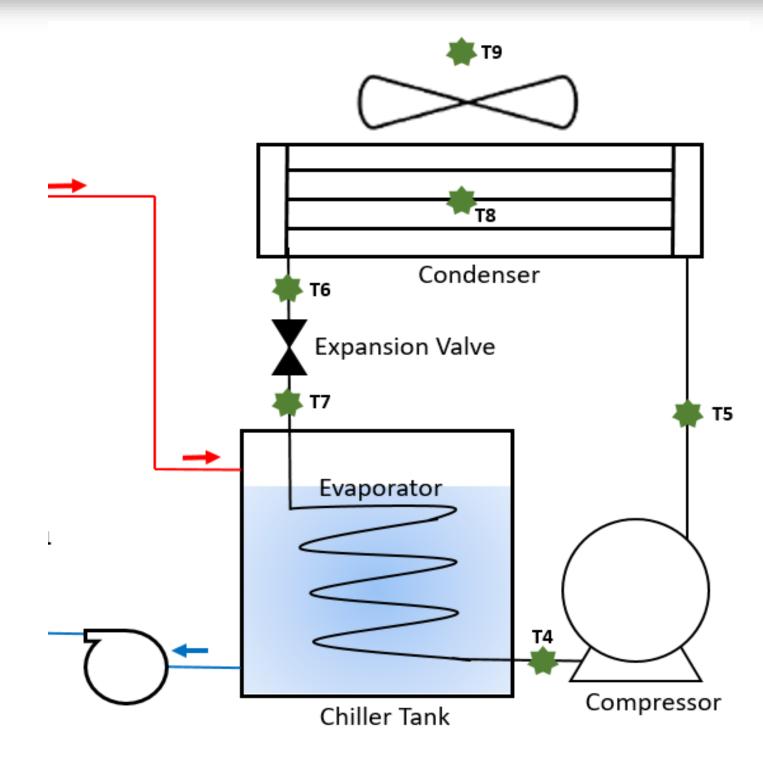

Fault Detection and Diagnosis for Chiller

Centre for Mechatronics and Hybrid Technology Mechanical Engineering McMaster University Swarnali Mukhopadhyay, Dr. Saeid Habibi

EECOMOBILITY (ORF) & HEVPD&D CREATE


Motivation

- global electricity is refrigeration consumed sector
- **≻**Improper maintenance of these systems cause 15-30% loss of energy
- Detect and Diagnose commonly occurring faults in vapour compression chillers
- Al based classification for fault and normal conditions using measurement data

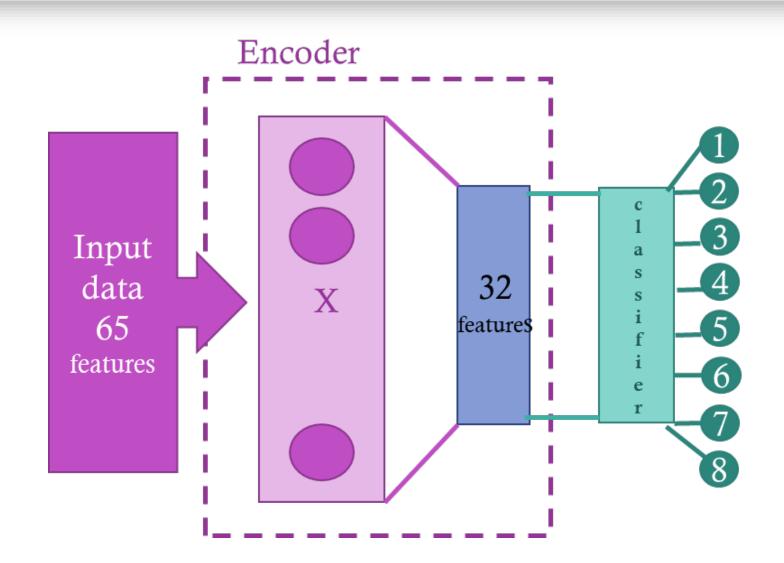
Chiller System

- chiller consists of 5 main components: evaporator, condenser the two heat exchangers, compressor.
- The pressure and temperature of these components are indicator of the health of the system.

Types of Faults

 7 faults are identified which have the highest frequency of occurring in a chiller as well as most cost intensive to repair.

Sr No.	Faults
1	Refrigerant Leak
2	Condenser fouling
3	Reduced Condenser Water Flow
4	Reduced Evaporator Water Flow
5	Non-Condensables in Refrigerant
6	Refrigerant Overcharge
7	Excess Oil


Each fault displays a unique pattern of rise and fall of the measured parameters such as temperatures and pressures at different locations on chiller system

	kW	PRE	PRC	TRC_sub	Tsh_suc	Tsh_dis	TEA	TCA	TEI-TEO	TCO-TCI	kW/ton	TO_sump	TO feed
Reduced Condenser Water Flow		A	A	A	•		•	A		A	A	A	A
Reduced Evaporator Water Flow		•		*	•	A	•		A		A		
Refrigerant Leak	•		V	V V				*			•		-
Refrigerant Overcharge	A	•	A	A		A		A		A	A	A	A
Excess Oil				•				A			A	A A A	A
Condenser Fouling			A					A		A	A		
Non-condensables in Refrigerant		A	A	A A A		A	•	4 4 4 4		A	A	A	•
Defective Pilot Valve		A		A	A	A	A	V			A		-

Al based FDD

- The unique pattern which each fault presents makes application of AI more prudent.
- The dataset used is publicly available by ASHRAE. The experimental data was collected by inducing faults in a chiller at various severity fault levels in different operating conditions.
- A hybrid approach which combines AI feature extraction with machine learning classifier was developed due to the high dimensionality of the data set.

Hybrid Model

- High dimensional data set is compressed by autoencoder which is trained using unlabelled data
- The compressed data is used as input in the classifier to diagnose normal or fault condition
- Different classifiers such as neural network and SVM are implemented
- The Hybrid model was able to classify all the classes with above 93% of accuracy.
- The machine learning classifier (SVM) performed better than the neural network classifier

