
Image Recognition with

Convolutional Neural Networks

CASE STUDY

SEPTEMBER 2019

BY

YIXIN HUANGFU

CENTRE FOR MECHATRONICS & HYBRID TECHNOLOGIES

224-200 LONGWOOD ROAD SOUTH

HAMILTON, ON

L8P 0A6, CANADA

© 2019 McMaster University

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University ii

Table of Contents

1 Introduction ... 1

2 Algorithms for Image Recognition .. 1

2.1 Multilayer Perceptron ... 1

2.2 Convolutional Neural Networks ... 3

2.3 Key Concepts .. 5

2.4 Advanced Models ... 5

3 Matlab Demonstration ... 7

3.1 Explore the Dataset ... 8

3.2 Split into Training and Testing Dataset .. 9

3.3 Configure and Train the Network ... 9

3.4 Evaluate on Testing Dataset ... 11

4 Conclusion ... 13

5 References ... 13

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 1

Image Recognition with

Convolutional Neural Networks

1 INTRODUCTION

Image recognition is the ability of computer software to recognize objects, such as

people and animals, by analyzing the patterns in optical images. Its applications have

gained a large amount of popularity in the recent decade, such as face recognition for

photographing, internet content filtering, advanced driving assistance system, and self-

driving vehicles. All these applications will not be feasible without the recent

development of neural networks and the computational capable hardware. In this case

study, we will dive into the fundamental of a popular image classification structure – the

Convolutional Neural Networks (CNN) – and implement it in Matlab to recognize hand-

written digits.

Section 2 of this document introduces neural networks, the convolution operation, a

few critical machine learning concepts, and some state-of-the-art CNN models. In Section

3, a hands-on Matlab tutorial demonstrates the model configuration, training process, and

performance evaluation. The digits dataset and Matlab code are attached to this document.

2 ALGORITHMS FOR IMAGE RECOGNITION

2.1 MULTILAYER PERCEPTRON

Artificial neural networks (ANN) is a subcategory of machine learning algorithms.

They are inspired by the brain system and try to use artificial neurons to replicate how

humans learn. Each neuron (a.k.a. perceptron) sums up multiple inputs and applies a non-

linear function to the summation. The output of this non-linear function is called an

activation. Figure 1 shows the diagram of an artificial neuron.

Connecting the inputs and outputs of multiple neurons constitutes a neural network.

Typically, the neurons are organized by layers, as shown in Figure 2. The neurons in each

layer only take inputs from the previous layer, and output to the next layer. This setup is

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 2

called multilayer perceptron (MLP), and this type of layer is called a fully-connected

layer. From left to right, the three layers are called the input layer, hidden layer, and

output layer, respectively. In the image classification case, the input layer represents an

image in vector form, and the output layer represents the class of the object. The value of

each output neuron is associated with the probability of the class it represents. The output

neuron with the highest probability value is the recognition result.

Figure 1: Illustration of one perceptron (change this)

Cat: 90%

Dog: 10%

Figure 2: A 3-layer neural network

Each neuron has a series of weights that need to be set to proper values to propagate

the correct output. The process of adjusting these weights is called training, and the

algorithms used for training are referred to as optimizers. During training, the optimizer

compares the network output with the true label to obtain an error. This error determines

how the weights should be adjusted and by how much. Successful training should show

the error decreasing and converging to a small value (if not zero), i.e., the network

prediction converging to the true label.

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 3

However, there are two problems when directly applying an MLP to image

recognition. First, converting an image into an input vector uses a method called

flattening. Flattening concatenates the rows of a multi-dimensional matrix to produce a

vector. This process loses the spatial relationship across multiple rows. For example, two

images may contain the same object but with slightly varied sizes and positions. To the

human eyes, it is easy to spot the similarity, but their vector representations can be vastly

different. Another problem appears as the size of the network grows. A typical image size

could be around 480×480 pixels, giving an input layer with a size of 691,200. Fully

connecting all these neurons generates a massive number of trainable weights, making

the training process extremely slow.

2.2 CONVOLUTIONAL NEURAL NETWORKS

The introduction of CNN addressed both problems. First, the input of a CNN is matrix

rather than a vector, preserving spatial information. The forward propagation is applied

directly to the matrix instead of individual neurons. In addition, the weights in a

convolution layer are shared across the whole image, reducing the parameters.

Figure 3: Convolving operation

Figure 4: Convolution effect on images

The convolution operation between two matrices is shown in Figure 3. The small 3×3

matrix maps itself to the large matrix (gray area), performing element-wise multiplication,

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 4

and then summing the 9 elements to produce one output. The small matrix then scans

through the whole large matrix, producing the result matrix. In neural networks, this small

matrix is called a kernel or filter.

If the input matrix comes from a 6x6 square image and values represent the darkness

of the pixels (0~9), this convolution operation works effectively as an edge detector. As

illustrated in Figure 4, the input image is half white, half black, with a clear vertical edge

in between, so the output highlights the edge in the middle (the value of 27 can be

normalized to the scale of 0~9). With different filter configurations, the convolution can

extract various features from the original image, such as curves and corners. In practice,

the filter values are trainable and get optimized during the training process. The training

data determine the most effective filter configurations.

Figure 5: A typical CNN model (LeNet-5)

The whole picture of a CNN model may look like Figure 5 [1]. In this setting, the input

layer has a size of 32×32, which is processed by 6 convolutional filters. The size of the

second layer is, therefore, 28×28×6. A subsampling operating is simply down sampling

the image, picking the dominant value in a subsample window. This process is more

commonly known as pooling. The same convolution-pooling process repeats, giving the

5th layer with size 5×5×16. The matrix is then flattened and goes through two fully-

connected layers described in the previous section. In this particular model, its goal is to

recognize 10 digits; therefore, the output layer has a size of 10. Compared to an MLP

with the same number of layers, this CNN has significantly less trainable weights. Thanks

to the convolutional filters, the spatial information is well preserved in the form of

convoluted features.

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 5

2.3 KEY CONCEPTS

Here are some useful terminologies for implementing a CNN model.

Activation function. As mentioned in Section 2.1, activation refers to the non-linear

function after the weighted sum within a neuron. In CNN, it refers to the non-linear

function after convolving the filter and the input matrix. In MLP, sigmoid functions are

often selected because they provide smooth gradients and saturation effects. Common

examples include the logistic function and hyperbolic tangent (tanh) function. In CNN,

the rectified linear unit (ReLU) function, or rectifier is preferred for its computational

efficiency, despite it not being continuously differentiable.

Logistic function: 𝑓(𝑥) =
1

1+𝑒−𝑥

Rectifier: 𝑓(𝑥) = max⁡(0, 𝑥)

Softmax function takes an input vector with 𝑁 values and normalizes it into

probability distributions. The output probability values are proportional to the

exponentials of the input values. Softmax is often used in the last layer of a classification

network.

𝑓(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑁
𝑗=1

, 𝑓𝑜𝑟⁡𝑖 = 1,… ,𝑁

Optimizer is the training algorithm to update neural network weights. While many

optimization techniques are applicable, the most popular ones are gradient-based. This

set of optimizers starts with the error between model prediction and true label and

updating the weights by taking their derivatives of the error. Therefore, they are called

gradient descent or backpropagation. Some popular variations of this algorithm are

stochastic gradient descent, RMSprop, and Adam.

2.4 ADVANCED MODELS

The recent advancement of computing power enables the application of larger, more

complex CNN models, which have boosted image processing performance. Here are

some of the latest advanced models that have proved effective.

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 6

The AlexNet model [2] developed in 2012 incorporating 5 convolutional layers can

process 224 x 224 RGB color images and recognize 1000 different objects. The research

team also developed practical techniques such as dropout and data augmentation to

accelerate the training process.

Figure 6: AlexNet model (2012)

The VGG-16/19 model [3] introduced in 2014 with 13/16 convolutional layers proves

the effectiveness of a deeper network. The performance has significantly improved

compared to AlexNet (error rate 16.4% to 7.3%), while its staggering 130 million

trainable weights set a bottleneck for network training.

Figure 7: VGG-16 model (2014)

The GoogLeNet model [4] introduced in the same year takes a different approach with

multiple paths between layers, letting the network choose the best path. It has significantly

fewer weights (6.8M) and performs slightly better compared to VGG models.

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 7

Figure 8: GoogLeNet model (2014)

The ResNet model [5] addresses the gradient vanish problem in deep network training,

creating a network depth of 110 layers with 1.7M trainable parameters. Its image

classification error reaches 3.57%.

Figure 9: ResNet model (2015)

The performance of image classification using CNN models has reached a human

level. Further reduction of the error rate is becoming trivial as the difficult image samples

tend to be visually confusing. The accuracy of these state-of-the-art algorithms is high

enough for many vision-based applications such as driving assist system and face

recognition.

3 MATLAB DEMONSTRATION

In this section, a CNN will be implemented to recognize images of digits using Matlab.

All files needed for the tutorial is attached:

- digits_images.zip: a zip file containing digits images,

- digits_recognition_live.mlx: the Matlab live script.

o Recommend to open this file in Matlab while going through this tutorial.

- digits_recognition.m: the Matlab script.

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 8

o This one is effectively the same as the .mlx file, but less elaborative. Use

this unless the .mlx version does not work correctly.

3.1 EXPLORE THE DATASET

The original dataset is openly accessible online at http://yann.lecun.com/exdb/mnist/

[1]. It contains a training set of 60,000 examples and a test set of 10,000 examples. The

digits have been size-normalized and centered in a 28×28px gray-scale image. Decoding

the original dataset requires specific software skills that are out of the scope of this

tutorial. Therefore, we provide the compressed file “digits_images.zip” containing 10,000

individual image files that are ready to use.

First, unzip the “digits_images.zip” file in the tutorial folder. This will give 10 folders

with names from “0” to “9”. Each folder contains 1,000 images of the same digit. For

example, the content in folder “0” should look like the following:

Matlab provides a convenient built-in function imageDatastore to load all image data

in a folder and infer the labels by their parent folder name:

datasetPath = '.\digits_images';

digitData = imageDatastore(digitDatasetPath, ...

'IncludeSubfolders',true,'LabelSource','foldernames');

http://yann.lecun.com/exdb/mnist/

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 9

After loading, randomly displaying 20 images and their labels will look like this:

3.2 SPLIT INTO TRAINING AND TESTING DATASET

Randomly splitting the dataset into training and testing set is a best practice to ensure

the integrity of evaluation. The model does not see the testing data during training, so the

test accuracy is more realistic and practical. In this case, we pick a ratio of 75%: 25%.

Since we have 10,000 samples for 10 labels, the training set will contain 750 samples for

each label:

trainNum = 750; % for each label

[trainDigitData, testDigitData] = splitEachLabel(digitData, trainNum,'randomize');

3.3 CONFIGURE AND TRAIN THE NETWORK

In Matlab, the neural network model is defined as a list of layers from the input to the

output. For simplicity, we will build a naïve CNN model containing only one

convolutional layer and one fully connected layer. The following script shows how the

model is constructed:

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 10

 layers = [imageInputLayer([28 28 1]) % input size: 28*28*1

 convolution2dLayer(5,20) % output size: 24*24*20

 reluLayer

 maxPooling2dLayer(2,'Stride',2) % output size: 12*12*20

 fullyConnectedLayer(10) % output size: 10

 softmaxLayer

 classificationLayer()]; % output size: 1

The imageInputLayer tells Matlab this input type is a 3d matrix representing 28×28

grayscale images. Following the input, the convolutional layer function specifies 20

filters with a size of 5×5. The reluLayer is not an actual layer; it simply configures the

convolutional layer's activation to be ReLU function. The pooling layer is used after

convolution to subsample the image features. Here each 2×2 window on the image is

subsampled to a scalar. This output matrix is flattened and fully connected to 10 neurons

in the next layer. Each neuron in this layer corresponds to a label/digit. A softmax function

is used to normalize the values across 10 neurons so that each output value represents a

probability. The last classificationLayer picks the label with the highest probability

score as the detection output.

Next step is to specify the training parameters using trainingOptions function:

 options = trainingOptions('sgdm','MaxEpochs',15, 'InitialLearnRate',0.0001);

Here the optimizer ‘sgdm’ means stochastic gradient descent with momentum, a

variation of gradient descend algorithm. In this simple example, the choice of optimizer

makes little difference to the training result. The ‘InitialLearnRate’ specifies the

gradient descend step size, whose practical choice is between 0.001 to 0.0001. This

function also specifies the total number of epochs. An epoch means the training has gone

through all the available data for one time. In practice, the number of epochs needed to

reach convergence varies depending on the size of data, the configuration of the network,

and training parameters. Therefore, this value often requires trial and error. In this study,

a value of 15 fits the setting just fine.

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 11

With the training data, network configuration, and training parameters all set, the

training process can start with this command:

 convnet = trainNetwork(trainDigitData, layers, options);

The training will start with the specified optimizer to update the network parameters.

Matlab provides a clean interface in the workspace to display the training process:

Training on single CPU.
Initializing input data normalization.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | Accuracy | Loss | Rate |
|==|
1	1	00:00:00	9.38%	13.9089	1.0000e-04
1	50	00:00:04	56.25%	2.7499	1.0000e-04
2	100	00:00:08	75.78%	0.9251	1.0000e-04
3	150	00:00:14	80.47%	0.9513	1.0000e-04
4	200	00:00:19	89.84%	0.2437	1.0000e-04
5	250	00:00:23	87.50%	0.4307	1.0000e-04
6	300	00:00:27	89.84%	0.2872	1.0000e-04
7	350	00:00:30	95.31%	0.2087	1.0000e-04
7	400	00:00:34	96.88%	0.1312	1.0000e-04
8	450	00:00:38	93.75%	0.2305	1.0000e-04
9	500	00:00:42	96.09%	0.1327	1.0000e-04
10	550	00:00:46	97.66%	0.0642	1.0000e-04
11	600	00:00:49	99.22%	0.0453	1.0000e-04
12	650	00:00:55	98.44%	0.0943	1.0000e-04
13	700	00:01:00	97.66%	0.0863	1.0000e-04
13	750	00:01:04	97.66%	0.1075	1.0000e-04
14	800	00:01:08	99.22%	0.0475	1.0000e-04
15	850	00:01:13	98.44%	0.0580	1.0000e-04
15	870	00:01:14	99.22%	0.0367	1.0000e-04
==					

If configured correctly, the accuracy will improve and the loss will decrease during

the training process. At the end of the training, the accuracy struggles the increase,

meaning the loss has converged, and the training should be stopped. We can now use this

model to detect digits from images.

3.4 EVALUATE ON TESTING DATASET

For overall evaluation of all 2500 test images, we can use this Matlab function to batch

process and classify:

 yTest = classify(convnet, testDigitData);

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 12

The result is a vector of 2500 predicted classes. It can be compared with the ground

truths to obtain the accuracy score:

 tTest = testDigitData.Labels;

 accuracy = sum(yTest == tTest)/numel(tTest)

This should give a score of around 94.24%. The number may vary a little due to the

randomness in the data splitting and model training process. To examine the result in

detail, we randomly select 20 test images, as shown below. The number under each image

indicates the ground truth label and model classification. There is only one image with

digit 9 misclassified as 2. All the rest 19 images are all correctly recognized. This agrees

with the test accuracy of ~94%.

At this point, we could conclude the model being effective at recognizing digits.

However, there are rooms for improvement, as the testing accuracy is 5% lower than the

training accuracy. The width and depth of the network can contribute to higher accuracy;

more sophisticated optimizers can help accelerate the training process; and the original

MNIST dataset is more inclusive than the one provided in this tutorial. The state-of-the-

Image Recognition with Convolutional Neural Networks -Y. Huangfu

Case Study - © McMaster University 13

art research has shown that CNN models can score more than 99% real-world test

accuracy, achieving human-level performance.

4 CONCLUSION

This document and the MATLAB companion files provide a case study on an image

classification problem: digits recognition. The theory of neural networks and CNN are

briefly introduced. Then a simple CNN model is implemented with Matlab script. With a

relatively simple configuration, the model can achieve high performance on the test

dataset, demonstrating the capability of CNN. This implementation can be easily adapted

to other image classification tasks with few changes in the code. More advanced CNN

models can be found in the references.

5 REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” in Proceedings of the IEEE, 1998, pp. 2278–2324.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” in Advances in Neural Information Processing

Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.

Curran Associates, Inc., 2012, pp. 1097–1105.

[3] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” arXiv:1409.1556 [cs], Sep. 2014, Accessed: Apr. 09,

2018. [Online]. Available: http://arxiv.org/abs/1409.1556.

[4] C. Szegedy et al., “Going Deeper with Convolutions,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015, pp. 1–9.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

