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 State estimation is the process of extracting values of states from 
indirect, inaccurate and uncertain partial measurements of a system.

 The main objective is to minimize the estimation error that is the 
difference between the actual state values and the measured ones.

 Modeling uncertainties are caused by modeling inaccuracies, 
simplification assumptions, parametric variations, etc. Measurement 
noise are due to instrumental and environmental factors.

 Due to presence of measurement noise and modeling uncertainties, 
measurements do not reflect the actual state values.
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 A dynamic system may be represented in state space by the process and the 
measurement model. The Process model is given by:

where x is the state vector, u is the control vector, w is the vector of
process uncertainties and f is the nonlinear state model.

 The measurement model is given by:

where z is the measurement vector, v is the measurement noise, and h
is the nonlinear measurement model.

 It is assumed that w and v are zero-mean white stochastic process and they 
are independent with respect to each other and the state vector x.

4

State Space Models in Discrete-Time

1 ( , , ),x f x u wk k k k 

1 ( , ),z h x vk k k 

State 
Estimation

Extended 
Kalman 
Filter

Smooth 
Variable 

Structure Filter

SOC 
Estimation 
Using EKF

SOC 
Estimation 

Using SVSF

SOC 
Estimation 

Results 



 Requirements for model-based state estimation:

1) System’s state model

2) System’s measurement model

3) The prior knowledge of the system

4) Input probabilistic characterization
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Optimal Filtering vs. Robust Filtering

 Main concerns with state estimation:
Presence of modeling inaccuracies, parametric uncertainties, small
variations of parameters due to aging, discretization error, further to
environmental and instrumental noise. There are two approaches:

1) Optimal Filtering:
Provide estimates by minimizing the state estimation error with an
exact knowledge of the process. The main method is the Kalman filter.

2) Robust Filtering:
Design a filter that is insensitive to a wider range of noise and
uncertainties. The main methods are the robust Kalman filter, H∞ filter,
and the novel smooth variable structure filter (SVSF).
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Extended Kalman Filter (EKF)

 The extended Kalman filter uses the local linearization to estimate
states of systems with nonlinear state and/or measurement models. The
rest of the process is similar to the Kalman filter.
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 The EKF calculates Jacobians of the nonlinear state or measurement model
based on Taylor series approximation and neglecting higher-order terms.
The Jacobians are given by:

 Main steps of EKF:

1) Prediction:

2) Innovation calculation:

3) Gain calculation:

4) Update:

8

The Extended Kalman Filter (EKF)
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Smooth Variable Structure Filter (SVSF) 

 The SVSF shows robustness against modeling uncertainties with a 
comparable accuracy compares to the Kalman-type filtering.

 The SVSF is designed based on the variable structure system concept 
and is formulated in a predictor-corrector from as follows:
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Main Steps of the SVSF 

1) Prediction of the states and measurements:

2) Calculation of the measurement error:

3) Calculation of the corrective gain:

4) Update the state estimate as:

 To suppress chattering, a smoothing boundary layer is applied:
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SVSF Design Notes

 Regarding the SVSF gain formulation, sgn is the signum function, ο is the 
Schur product (element-by-element multiplication), and       is the pseudo-
inverse transform. is a diagonal matrix with positive entries:             

 ψ is a diagonal matrix with constant entries and denotes the smoothing 
boundary layer widths.

 To suppress chattering from state estimates, a smoothing boundary layer is 
applied. In this context, the signum (sgn) function is replaced with a 
saturation (sat) function and this interpolates the discontinuous corrective 
action of the SVSF gain.

 The sat function is defined by:
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Smoothing Boundary Layer Concept

 SVSF has two boundary layers: 1-the existence layer, 2-the smoothing layer.

 The existence layer’s width is unknown and time-varying. It is a function of 
modeling uncertainties. The smoothing layer is design to encompass the 
existence subspace and by doing so, chattering is suppressed.
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Importance of SOC estimation

 In spite the amount of fuel in tank that is measured using a fuel gage, 
there is not any direct way to measure the state of charge of a cell.

 The SOC needs to be estimated using a state estimator and input-
output data: 
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The Third-Order R-RC Model

 Values of C1, R1, C2, R2, C3, R3, R+, and R- were obtained by capturing
input-output data and applying the genetic algorithm.
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 In order to design a estimator, the 
process needs to accurately be modeled.

 The R-RC-RC-RC model uses three R-C 
elements for representing cell dynamics:
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Parameters of 3rd-Order R-RC Model

 Numeric values of parameters obtained for 
3rd-order R-RC model using optimization:
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State of Charge (SOC) Estimation

 Implementing the EKF and the SVSF for SOC estimation

 Observability of a model can be checked via the observability matrix:

The systems is said to be completely observable, if the observability 
matrix O is full-rank.

 The 3rd-order R-RC model is completely observable, since the rank of the 
observability matrix O is equal to 4 (the number of states).

 Rank of the 3rd-order R-RC:

(Proper for SOC estimation)
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Linearization of Measurement Model
17

 To use the EKF and the SVSF method for SOC estimation of the Li-Ion 
cell, the measurement model needs to be linearized with respect to 
the state of charge variable zk.

 The linearization is performed using the Taylor’s series expansion, 
where high-order terms are neglected. The Linearized model is:

 The main nonlinear term is the first (the partial derivative) term:
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Review of the Simulink Model

 The EKF and the SVSF blocks for SOC estimation using Simulink:
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SOC Estimation Using EKF

 For the EKF, the process noise covariance Q and the measurement noise 
covariance R are respectively set to:

 Numeric values of Q, R, and P0 have been calculated by trial and error in 
order to achieve the best performance for the EKF.

 The actual initial SOC is about 90.7%. The actual values of V1(0), V2(0), 
V3(0) are unknown. They are assumed to be zero.

 The EKF block has two inputs that are the current data “Current.mat” 
and the measured terminal voltage data “Voltage.mat”.
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The EKF User-Interface Window

 The EKF user-interface window for input data:
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The EKF Model in Simulink

 A picture of the elements inside the EKF block
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The EKF Gain in Simulink

 A picture of the elements inside the EKF gain:
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SOC Estimation Using SVSF

 For the SVSF method, the convergence rate matrix γ and the smoothing 

boundary layer width ψ are respectively set to:

 Numeric values of γ, and ψ have been calculated by trial and error in 
order to achieve the best performance for the SVSF.

 Similar to EKF, the actual initial SOC is about 90.7%. V1(0), V2(0), V3(0) 
are not unknown and are assumed to be zero.

 The SVSF block has two inputs that are the current data “Current.mat” 
and the measured terminal voltage data “Voltage.mat”.
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The SVSF User-Interface Window

 The SVSF user-interface window for input data:
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The SVSF Model in Simulink

 A picture of the elements inside the SVSF block:
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The SVSF Gain in Simulink

 A picture of the elements inside the SVSF gain:

26

State 
Estimation

Extended 
Kalman 
Filter

Smooth 
Variable 

Structure Filter

SOC 
Estimation 
Using EKF

SOC 
Estimation 

Using SVSF

SOC 
Estimation 

Results 



SOC Estimation Using 3rd-Order R-RC

 Using 3rd-R-RC model:

 Actual initial SOC=90.7% 
and initial SOC=85% :
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Main Sources for Noise & Uncertainties

 Main sources for modeling uncertainties are:
1) uncertainties in the initial SOC,
2) inaccuracies by approximating cell dynamics via a circuit model,
3) averaging OCV-SOC curve for charge-discharge with a single curve,
4) parametrization error.

 Main sources for parametric uncertainties are:
1) error in the parameter identification of the cell,
2) deviations of parameters from their nominal values due to aging. 

 Main sources for noise are:
1) the instrumentation noise, 
2) the voltmeter measurement noise,
3) unpredictable variations of the cell temperature.
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Estimation with Uncertainties on Initial SOC

 Using 3rd-R-RC model:

 Actual initial SOC=90.7% 
and initial SOC=50% :
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 Vt estimate where 
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Estimation with Parametric Uncertainties

 Using 3rd-R-RC model:

 SOC estimation where 
Actual Cn=75% of 
estimator’s Cn:
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 Vt estimation where 
Actual Cn=75% of 
estimator’s Cn:
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Comparison of Robustness

 RMS values of the error for different levels of modeling uncertainty:

 The table proves that the SVSF is more robust versus modeling uncertainties 
in comparison to the EKF.
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Conclusion & Summary

1) There are several sources for modeling and parametric uncertainties in
the equivalent circuit modeling of Li-Ion cells.

2) The SVSF method benefits from the robustness characteristic of
variable structure systems versus unknown uncertainties.

3) The SVSF produces more accurate SOC estimates over the EKF, where
there are parametric uncertainties on. This is due to its robustness
property versus modeling and parametric uncertainties.

4) The EKF provides more accurate SOC estimates over the SVSF, where
there are uncertainties on the initial SOC estimate.
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 A 2nd-order R-RC model is defined as follows. Parameters of the model are 
listed in the table and the OCV-SOC relationship is similar to one used by 
the 3rd-order R-RC. Design a SOC estimators using the EKF and the SVSF 
method for the 2nd-order R-RC model in Simulink and compare the results.
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